Section 10 - Flood Elevation Requirements

A. Introduction - Localities in Hampton Roads have adopted flood elevation freeboard design criteria that exceed FEMA flood elevations. The required freeboard affects finished floor elevation in these localities, including those on HRSD projects. To comply with the Locality requirements and to consider Sea Level Rise, this standard will cover the process to determine the finished floor elevation for HRSD projects.

B. Definitions

- Freeboard - the calculated difference between the finished floor elevation and the FEMA Base Flood Elevation for the 100-year storm
- BFE - Base Flood Elevation
- EWL (100yr) - Extreme Water Level for the 100 year storm event

Flood Zone definitions can be found on the FEMA website, https://www.fema.gov under “Flood Zones”

C. Locality Code Requirements

The freeboard and finished floor elevation requirements should be verified with the locality in question for each project when initiated. Localized drainage conditions should also be considered for each project when setting the elevation for new buildings or structures.

The following example is for freeboard construction requirement in the City of Hampton at the HRSD Bridge St. PS Location. Note that it may not represent the current construction standards for the example Locality.

Hampton Freeboard, Zone AE: FEMA Base Flood + 3'

D. Steps for Determining Construction Elevation

The following procedure shall be used to determine the finished floor elevation:

1. Using Table 1 below, plot the following:
 i. Sea Level Rise, Intermediate
 ii. Sea Level Rise with an Extreme Water Level for the 100 year storm event
 iii. FEMA Base Flood Elevation (https://msc.fema.gov)
 iv. Locality Freeboard Requirement
<table>
<thead>
<tr>
<th>Year</th>
<th>Intermediate</th>
<th>EWL (100yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>0.46</td>
<td>7.46</td>
</tr>
<tr>
<td>2030</td>
<td>0.82</td>
<td>7.82</td>
</tr>
<tr>
<td>2040</td>
<td>1.21</td>
<td>8.21</td>
</tr>
<tr>
<td>2050</td>
<td>1.64</td>
<td>8.64</td>
</tr>
<tr>
<td>2060</td>
<td>2.13</td>
<td>9.13</td>
</tr>
<tr>
<td>2070</td>
<td>2.62</td>
<td>9.62</td>
</tr>
<tr>
<td>2080</td>
<td>3.21</td>
<td>10.21</td>
</tr>
<tr>
<td>2090</td>
<td>3.77</td>
<td>10.77</td>
</tr>
<tr>
<td>2100</td>
<td>4.39</td>
<td>11.39</td>
</tr>
</tbody>
</table>

2. The design life for all new HRSD buildings is 50 years.
3. Calculate the elevation design year by adding 50 years to the year of site plan approval. Read the graph vertically from the elevation design year. The highest intersecting elevation line is the design finished floor elevation. See example below.

E. Elevation Requirement Example - The following example is based upon HRSD’s Bridge Street Pump Station project located in Hampton.

- FEMA Base Flood Elevation: 8’
- Hampton Freeboard, FEMA BFE + 3’: 11’
- Year of Site Plan Approval: 2015
- Design Year: 2065

From the graph, read Finished Floor Elevation of 11’, as indicated by the circled point.