Section 30 - Pump Stations

A. Introduction - HRSD owns and operates wet well stations and pressure reducing stations. Wet well stations are sized to receive projected flows from gravity sewers and discharge to force mains. Pressures reducing stations and/or other facilities are sized to maintain the pressure head in force mains within HRSD operating limits. Wet well stations, force mains and pressure reducing stations are all sized and operated in accordance with HRSD’s Hydraulic Grade Line (HGL) policy.

1. Wet Well Pump Station - Flows are discharged by gravity sewers or force mains into a wet well from which they are pumped into a force main. The pumps are designed for a flooded suction condition and are located in a separate dry well adjacent to the wet well with intake piping leading from the wet well to the pumps. HRSD does own, operate, and maintain several submersible pump stations, although these are typically for small locality served systems.

2. Pressure Reducing Station (PRS) - A pressure reducing station is connected directly to a force main and is used to maintain the pressure on the suction side of the pumps.

B. Description of Operations

1. Wet Well Pump Station

a. Wet well stations typically use variable speed pumps to match flow fluctuations and minimize turbulence in the wet well to reduce odor, corrosion and air entrainment.

b. A proportional integral derivative (PID) level controller shall be configured in the programmable controller to control the sewage level in the wet well. The level controller shall vary the speed of the pumps as required to match the pump discharge flow rate to the wet well influent rate. The desired level to be maintained in the wet well will be programmed in the programmable controller as the set point for the level controller. The level controller will compare the actual wet well level to the set point level and output a 4-20mA speed reference signal to the variable frequency drive (VFD) for operating the sewage pumps to increase or decrease the speed of the pump or pumps as required to maintain the set point level.

c. A standby pump shall be called to operate at the high water alarm level.

2. Pressure Reducing Station

a. Pressure reducing stations typically use variable speed pumps to match flow fluctuations to lower the pressure on the suction side of the station. Pressure reducing stations do not typically run continuously and are not normally required to operate until the force main flow reaches approximately two-thirds of the design flow.

b. Pressure reducing stations operate by starting the lead pump when the force main discharge pressure increases to a preset high limit. The lead pump speeds up and
slows down to maintain the force main suction pressure within a preset range. If the lead pump cannot maintain the force main suction pressure within the preset range, an additional pump or pumps are started and operated together to maintain the suction pressure within the preset range. As the force main discharge pressure decreases to preset lower limits, the pumps are stopped in the reverse order as needed until all pumps are stopped.

c. Provide for piping and valves inside of the pump station so that the force main flows can be pumped in either direction as appropriate with the operation of a minimum number of valves.

C. General

1. Pump stations shall meet the requirements of the *Virginia Department of Environmental Quality Sewage Collection and Treatment (SCAT) Regulations.*

2. Pump stations shall be designed to Hydraulic Institute (HI) Standards to the extent possible. Exceptions to the HI Standards to be discussed with HRSD and approved on a case-by-case basis.

3. Pump station shall be designed based on the following:

 a. Initial operating range

 i. Low night time diurnal
 ii. Average daily flow
 iii. Peak hourly flow (wet weather level of service (LOS))

 b. Future operating range

 i. Low night time diurnal
 ii. Average daily flow
 iii. Peak hourly flow (wet weather LOS)

 c. Minimal changes to accommodate increasing flows/pressures due to future flow conditions, e.g. a motor or impeller change.

 d. Both the initial and future operating ranges shall be provided in the specifications.

 e. Under typical operating conditions for variable speed systems, pumps shall be capable of maintaining wet well level without cycling on/off.

 f. Pumps shall operate within the pump's preferred operating range (POR) under all possible flow scenarios and operating conditions.
4. Pump station shall be capable of meeting the peak design flow condition with the largest pump out of service.

5. Pump stations shall be designed to comply with locality flood elevation construction requirements. The current locality requirements, available at the time of publication of this manual, that need to be verified for each project, are listed in Section 10 – “Flood Elevation Requirements”.

6. Provide a separate generator room or building with adequate space for maintenance and heat rejection from the engine block and exhaust system or isolate remaining areas from generator noise and heat.

7. Provide a slope on the pump room floor that will convey seepage from pump packing and drainage from wash down to a sump. Provide Zoeller Model 137D sump pump unless otherwise approved by HRSD's Project Manager.

8. Provide a commode in a separate room or enclosure. Provide a washbasin in the pump station.

9. Design shall incorporate measures to facilitate the maintenance and removal of equipment and pumps in both dry well and wet well areas.

10. Provide access to dry well and wet well by stairs.
 a. Spiral stairs and ship ladders are not acceptable.
 b. Stairs shall be a minimum width of 36 inches and shall include handrails on both sides.
 c. Stair riser heights and tread depths shall comply with the International Building Code (IBC), latest addition.

11. Design wet well and influent piping to minimize turbulence and air entrainment in the wet well.

12. Provide minimum submergence required to eliminate vortex at pump suction intake.

13. Evaluate the need for odor control and make provisions as necessary.

14. Locate discharges for sump pump, pump air release and restroom discharge away from pump intakes in the wet well and design to minimize turbulence and air entrainment.

15. Furnish and install a removable stainless-steel bar screen. Channel shall be designed to accommodate a hydraulic grinder system and a bar screen interchangeably. The electrical system shall be designed with the necessary capacity for the grinder system.

16. Provide wet wells that slope toward the pump suctions and do not create areas where solids can collect and build up.
17. Concrete in the wet well shall be protected from corrosion by the use of polymer concrete, anti-microbial additive, surface applied coating system or a thermoplastic sheet liner.

a. Thermoplastic sheet liner shall not be used on influent channels.

18. Provide smooth interior wet well surfaces. When installing thermoplastic sheet liner system, ensure that it is anchored into the new concrete and protect all interior concrete surfaces except the surfaces 1'-0" below the lowest water level in the wet well, i.e. the floor and lower walls. Use light-colored thermoplastic only, never black or other dark colors.

a. The approved thermoplastic sheet linings for new pump station wet wells are:

 i. T-Lock Amerplate by Ameron International of Brea, California. (PVC Sheet Linings), or
 ii. GSE Studliner by GSE Lining Technology, Inc. of Houston, Texas. (High Density Polyethylene Liner), or

b. The anchored thermoplastic sheet linings shall be installed in strict accordance with the manufacturer's recommendations and shall be installed to ensure a pinhole free lining system. Particular care must be taken to ensure that lining terminations and transitions at changes in direction and at metal pipe penetrations, and leading edges are properly treated.

c. Hot air welding on liners.

 i. PVC liners shall be performed by certified welders trained by the selected manufacturer in strict accordance with the manufacturer’s instructions. Welding shall fuse both sheets and weld strips or filler material together to provide a continuous joint equal in corrosion resistance and impermeability to the basic liner sheets.
 ii. Joints on HDPE liners shall be filled using extrusion welding performed by personnel trained by the liner manufacturer.

d. Quality Control Testing

Once the thermoplastic sheet liners have been installed, the concrete forms removed, and all welding performed, the lining shall be inspected and tested by an independent testing firm as follows:

 i. The entire lining shall be carefully visually inspected for pinholes or damage.
 ii. All welds shall be probed with a blunt instrument like a putty knife to identify any weld defects.

All surfaces of the sheet linings shall be tested with an approved (by the
manufacturer) electrical holiday detector with the instrument set at the voltage range recommended by the manufacturer. This testing should only be performed by a certified technician trained by the manufacturer of the sheet lining or qualified previously to do so.

19. All below grade concrete structures shall have an exterior vapor barrier and/or waterproofing approved by HRSD.

20. Pump Station Substantial Completion Checklist – refer to Attachment A.

D. Site Issues and Layout

1. Pumping station building and site shall be designed and configured to be in harmony with the surrounding setting. Architectural and landscaping designs and renderings will be submitted to and approved by HRSD at the PER stage. Refer to Section 2 – “Architectural and Landscaping Design and Review Process” in this standards manual.

2. Real-estate setbacks: Property shall accommodate existing and future HRSD development requirements, taking into consideration setbacks and zoning restrictions.

 a. Minimum property dimensions for a Pump Station is 150 feet x 150 feet.
 b. Minimum property dimensions for a Pressure Reducing Station is 200 feet x 200 feet.

3. Evaluate the need for the acquisition of additional property to accommodate future pump station replacement, off-line storage and/or other HRSD facilities.

4. Design must consider potential off-site impacts including noise, odors, excessive light and other impacts to adjacent property owners.

5. Provide concrete entrance and a paved driveway for off-street parking, access to building and provision to turn around a crew truck.

6. Include a site plan showing property lines, building, piping, existing & proposed utilities, valves, emergency pump connection, physical features, topography, etc. and any other requirements by the local approving authority.

7. Set a new benchmark at each new pump station or PRS and provide a data sheet to include a site map, coordinates, elevations, descriptions at a minimum. Coordinate accuracy should be within 1/100 of a foot.

 a. This applies to the following if a benchmark does not exist:
 i. Rehabilitation projects
 ii. Acquired assets (PS, PRS)

8. Refer to Section 34 – “Miscellaneous” in this standards manual for additional site
layout information.

E. Masonry

1. Refer to Section 34 – “Miscellaneous” in this standards manual for additional information.

2. Building walls shall be concrete block with exterior brick veneer or as otherwise determined by HRSD's Architectural Review Committee and referenced in Section 2 – “Architectural and Landscaping Design and Review Process”.

3. All lintels shall be stainless steel.

F. Equipment

1. Pumps shall be centrifugal, non-clog, solids-handling pumps, capable of passing a 3-inch solid.

2. Pump manufacturer shall certify that the pump will meet the design requirements.

3. In typical installations, pumps shall be dry-pit submersible, close-coupled or extended shaft-driven pumps. Pumps will be evaluated and recommended for use by the FIRM.

 a. The FIRM shall carefully evaluate the size and dimensions of each manufacturer's product for compatibility with the space where the pump and accessories will be installed. This is especially important for rehabilitation projects where different pumps and motors are required within limited available space. Consideration must be given by the FIRM for maintenance access and removal of the pump and motor within existing spaces due to varying dimensions between manufacturers for similar products.

4. Pump, motor and impeller shall be balanced as a unit at the factory prior to shipment. Motor shall be inverter duty rated.

5. For submersible pumps, motor shall be equipped with two (2) moisture detection sensors, one in the mechanical seal oil bath and one in the lower portion of the armature area.

6. Accommodations shall be made to properly cool all electrical equipment and motors to effectively dissipate heat.

7. Pumps shall operate at speeds below 1,000 RPM unless otherwise approved by HRSD's Project Manager.

8. Spare parts to be provided by the contractor shall typically include the following. A requirement to furnish a spare volute and/or other major mechanical or electrical parts is project specific and should be discussed with HRSD.
1. Provide a load rated monorail, trolley, and hoist with appropriate hatches and doors to directly access and remove the pumps and motors for maintenance. Use removable load rated grating to cover interior openings that are to be used for removal of equipment. Indicate the load ratings on the plans, stencil load ratings on the trolley, hoist, and monorail, and provide three copies of certified load testing documentation. The monorail/trolley/hoist shall be load tested in accordance with OSHA requirements during construction by the contractor.

2. Consider the provision for electric trolley and/or hoist.

3. Provide direct access to monorail and hoist (or install separate lifting devices) for removal of sump/submersible pumps, as needed.

4. Provide rated lifting eyes to assist with equipment removal.
1. **Interior Piping**

 a. Provide ductile iron flanged joint.

 b. Provide a valve on the suction and discharge sides of each pump.

 c. Provide a shut off valve or sluice gate on the gravity influent pipe. Preferred means of isolation is a 316 stainless steel, fabricated, heavy-duty sluice gate.

 d. Gate valves shall be OS&Y or have a visual indicator, open left, and be coated with fusion-bonded epoxy.

 i. Chain wheel actuators shall not be permitted.

 e. All valves shall be easily and safely accessible for maintenance and operation. Provide OSHA approved fixed platform sufficient for a 2-person maintenance crew, as needed.

 f. Provide a check valve on the discharge side of each pump between the discharge valve and the pump.

 i. Check valves shall not be installed in the vertical position.

 g. Provide check valves with iron body, bronze seat check and bronze ring on disc. Check valves shall be provided with packing glands and external lever and spring in accordance with AWWA C508.

 h. Provide adequate pipe support and thrust restraint with base elbows, base pads or hangers as required. Metallic pipe supports and hardware shall be stainless steel.

 i. Use eccentric reducers (match elevations at top of pipe) on the suction and discharge piping in order to prevent the entrapment of air.

 j. Provide a manual air release on the discharge of each pump. Reduce from tap on pump volute to ½-inch pipe and ½-inch ball valve. Provide a union to transition to ¾-inch HDPE air release piping to wet well. All pipe valves and fittings except HDPE shall be stainless steel.

 k. Exterior wall penetrations shall be accomplished with a wall sleeve. Seal between sleeve and carrier pipe with a "Link Seal" type seal with stainless steel hardware. Bolts on the link seal shall be oriented so that they are tightened from inside the station. Penetrations between the pump room and wet well for pump suction piping shall utilize wall pipe with a cast integral seep ring.

 l. Provide an eyewash station near the generator batteries in accordance with the current safety requirements.
m. Provide flexible connections on suction and discharge of pump to ensure motion and vibration is absorbed.

2. Exterior Piping (Force Main)

 a. Refer to Section 24 – “Pipelines and Appurtenances” in this standards manual for additional requirements for force mains.

 b. All pump stations shall have a mainline valve on both sides of the emergency pump connection.

 c. Wet Well Pump Station - Provide an emergency pump connection with valves and blind flange(s). Also, provide an HDPE suction leg into the well. The connection or transition from HDPE to ductile shall be outside the wet well. Size pipe for emergency connection based on pump station design flow rate.

3. Provide for space heating to prevent freezing of pump station facilities, as appropriate.

4. Ventilation of the wet well shall meet SCAT regulations. Provide for 12 air changes per hour for continuous ventilation and 30 air changes per hour for intermittent ventilation. The ventilation system shall be designed to ventilate all areas of the wet well and prevent "short circuiting" of the air.

5. Provide potable water for the restroom and hose bibs from the municipal water system or from a well if municipal water system is not available.

6. Provide a Virginia Department of Health (VDH) approved reduced pressure principal backflow preventer to be installed on the main potable water line where it enters the pump station and prior to any outlets in the pump station. Backflow preventer shall be tested and certified after installation.

7. Provide for the discharge of restroom drainage and the sump pump.

 a. Pressure Reducing Station - Discharge restroom drainage to the municipal sanitary sewer system, if available or pump discharge into the pump station suction leg utilizing a small package grinder pump. Grinder pump shall meet the maximum inlet head conditions.

 b. Wet Well Pump Station - Discharge restroom drainage to the pump station wet well.

I. Electrical & Instrumentation

 1. Refer to Section 32 – “Electrical and Instrumentation” in this standards manual for additional information regarding electrical and instrumentation systems.

 2. Provide a standby generator in order to meet Class I reliability. The generator shall be designed to meet the design capacity of the pump station with the primary power
off.

3. Install electrical equipment and motors above the 100-year flood elevation or otherwise protect from the 100-year flood. Refer to Section 10 – “Flood Elevation Requirements” in this standards manual.

4. Require Contractor to install wiring for alarm system to the transmitter and to the front door for the card swipe. A new SCADA system will be on the panel (OIT) and alarm panel. Alarm points to be determined by HRSD. Alarm transmitter, card swipe, and alarm panel shall be provided by HRSD.

5. Provide variable frequency drive controllers to control pump speed.
 a. Pressure Reducing Station
 i. Pump speed shall be controlled in response to suction pressure.
 ii. Provide two pressure sensors (one 0-10 psi and one 0-70 psi) on the suction piping and one pressure sensor on the discharge piping. All mounted on 4-inch Red Valves. Refer to Section 34 - Standard Details in this standards manual.
 b. Wet Well Pump Station
 i. Pump speed shall be controlled in response to wet well level.
 ii. On the pump discharge header, provide a 4" pressure sensor as manufactured by Red Valve or approved equal. Provide a tee with a 4" branch and install a 4" gate valve on the branch prior to the pressure sensor and install a blind flange on the outside of the pressure sensor.
 iii. Wet well levels to be monitored by means of level sensors or bubbler system. If level sensors are utilized, two level sensors shall be installed, one for SCADA and one for control. Provide a maintenance port for the level transmitter in the wet well.

6. Consider the inclusion of contacts to operate the pumps across the line in the event that the variable frequency drives fail. The alarm system will notify the operators of a variable frequency drive failure and the drives must be switched to the across the line contacts manually. The pumps can be started sequentially in the across the line mode of operation. Evaluate other means of providing variable frequency drive backup when motor horsepower exceeds 200 HP. In all cases, investigate the capacity of the local power grid to accommodate the across the line motor starting.

7. Include a flow meter and pressure sensor sized based on the design flow rate for the pump station. Location of the flow meter shall be downstream of the emergency pump connection.

8. Provide a high-level float ball and a low-level float ball in the wet well and a float ball in the pump room.

11. All new pump stations and PRS's shall include an electrical interface located at the pump station to integrate the Advanced Prime Guard Controller used on Xylem (Godwin) pumps with the existing HRSD SCADA system.

12. Temporary Portable Pump Alarms and Setup Standards – refer to Attachment B.

End of Section